导航菜单

四管同步升降压变换器工作原理及设计相关问题详解

四管同步BuckBoost升降压变换器为单电感结构,不需要耦合电容,尽管系统需要四个开关管,控制相比较复杂,但由于采用同步的变换器,系统的效率比SEPIC高,而且体积比SEPIC小,非常适用于汽车及通讯这类系统的效率和体积要求严格的应用。下面本文将讨论这种四管同步BuckBoost升降压变换器的具体的工作原理及设计过程的相关问题。

电子系统的一些应用中由于输入电压的变化,电源的输出可能低于输入电压也可能高于输入电压,对于非隔离的电源变换器,这时候要采用升降压的拓朴结构。常用的升降压拓朴结构SEPIC需要二个电压,中间还需要耦合电容,因此当输出功率较大时,电感和电容的体积大,成本高,而且整机系统效率差。

1、四管同步BuckBoost升降压变换器工作原理

四管同步BuckBoost升降压变换器的拓朴结构如图1所示,其中Cin和Cout分别为输入和输出直流滤波电容,A和B为输入侧功率开关管,C和D为输出侧功率开关管,可以看出:四个开关管结构类似于全桥的结构:A和B及C和D分别类似于全桥电路的二个桥臂,L为功率电感。


四管同步升降压变换器工作原理及设计相关问题详解

图6:PCB布局


升压Boost变换器的电感位于输入回路,所以输入回路的电流是连续的,输出回路的电流是不连续的,输出回路的干扰大,这些环路产生很大的磁场发射,因此输出回路要尽可能的小,输出回路的地为功率地,要与系统的信号地分开单独布线,输入地可以作为干净的信号地。

两者的兼顾对PCB设计要非常的小心,开关回路中du/dt比较大的节点SW1和SW2及其回路,要尽可能的小,因为这些环路产生很大的电场发射。

电流检测回路,电流检测电阻要用KEVIN连接,直接从电流检测电阻两端布线,线径要细,并且平行平线。

4、功率MOSFET选择

功率MOSFET的功耗主要为导通损耗和开关损耗,如果功率MOSFET工作于同步整流状态,主要的功耗为导通损耗、二极管死区时间及反向恢复损耗,这些内容可以参考以前的文章。

参考文献

(1) A.I. Pressman. Switching Power Supply Design (second edition). New York: McGraw-HillPublishing Co., 1998.

(2) LTC3780数据表

专注电子工程技术

EDA365(平台成立于2006年,中国最大的互连设计专业论坛。整合电子产品开发所需用的设计工具、实际设计知识,以及丰富的工程技术设计和测试案例实践等诸多方面经验,为工程师提供设计培训演练、解疑答惑、就业实习、升级求职以及设计外包等专业服务。专注电子工程师能力提升和价值体现,是最具人气的电子工程师互动社区。